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Modern multicore machines
● More and more cores per machine
● A modern multicore machine is a “distributed computer” with a single coherent 

shared memory (with NUMA: Non Uniform Memory Accesses)
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● Because accesses to data can be concurrent, execution contexts need to 
synchronize

● Using mutual exclusion locks is the most popular synchronization technique

● Locks introduce sequential parts

● The scalability of an application is always constrained by its sequential parts 
(Amdahl’s law)

Parallel programming, mutual exclusion and locks
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Thesis statement
● Many lock algorithms, still an active field of research

● Limitations of existing studies: 
○ Microbenchmarks, limited number of algorithms/applications/workloads, focus only on 

throughput...
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Thesis contribution

Thorough and practical analysis of mutual exclusion lock algorithms,
with the goal of 

providing software developers with enough information 
to choose and design 

fast, scalable and energy-efficient synchronization in their systems
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Background 
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Locking 101
● Lock/unlock

○ Protect a critical section (CS), only one thread can hold the lock, others block waiting for it

● Trylock
○ Try to acquire the lock and if not available, execute other work instead of blocking

● Condition variables
○ Allow a thread to wait for a software-level condition while inside the critical section, by 

temporarily releasing the lock and acquiring it again when the thread has been notified that the 
condition is met
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Deconstructing a lock: three main design questions
● How to acquire the lock?

○ (Almost) always use atomic processor instructions to ensure the atomicity of the CS

● How to release the lock?
○ When there are other threads waiting for it (which successor)?
○ Where there is no thread waiting for it

● What to do while waiting for a lock already held?
○ Often orthogonal to the choice with respect to lock acquisition
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● Spinning 
○ Wait actively for the lock

● Immediate parking
○ Thread is descheduled until the lock is available

● Hybrid approaches 
○ Spin-then-park (mitigate the cost of parking)

Waiting policy
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TTAS lock algorithm (Test-and-Test-And-Set)
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TTAS lock algorithm
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TTAS lock algorithm
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TTAS lock algorithm
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TTAS lock algorithm
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Categorizing lock algorithms
● Competitive succession

○ At unlock time, all waiting threads try to acquire the lock concurrently, with atomic instructions

● Direct handoff succession
○ Waiting threads are ordered, give the lock to a specific successor

● Hierarchical approaches
○ Hierarchical scheme of lock acquisition, minimize lock migrations between NUMA nodes

● Delegation-based
○ Delegate the execution of the CS to another thread

● Load-control
○ Adapt the lock algorithm to runtime conditions (level of contention, scheduler inefficiencies) 17
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Related work: other studies
● Limited number of lock algorithms

○ Approximately 10 algorithms: [EVERYTHING], [MALTHUSIAN], [RCL]

● Mainly microbenchmarks
○ Test a property of a lock (scalability), but do not capture how the locks behave inside the 

application
○ Often ignore the interactions of locks with scheduling and memory management

● Limited number of applications and metrics
○ Approximately 10 applications, mostly focus on throughput
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Objective
● We want to compare many locks on many applications

● Tedious because it requires changing the source code of each application

How to do this practically?
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LiTL
Library for Transparent Lock interposition
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General principles
● Almost all the application use the pthread_mutex_(un)lock functions

○ Use a dynamic library to provide different implementations of the locking-related functions

● Advantages:
○ Testing a new lock is very easy: switching between lock algorithms by loading a specific dynamic 

library (e.g., via LD_PRELOAD)
○ Stacking libraries is possible: e.g., for collecting lock statistics of any lock implementation (hold 

time, acquisition throughput, etc.)
○ Providing condition variables to workload-specific locks
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Challenges
● Different lock semantics

○ Supporting per-thread contexts
■ Lock algorithms like MCS require a per-thread context
■ The Pthread locking API does not support this
■ Use an array of per-thread contexts

○ Linking the original lock instance with the optimized lock instance
■ Hashmap between pthread mutex pointer and lock implementation 

● Condition variables
○ Used by many applications, ignored by lock designers
○ Reuse the Pthread condition variables implementation by acquiring an (almost always) 

uncontended Pthread lock
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Validation
● Modify the source code of 4 applications, compare manual vs LiTL
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Study
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Methodology
● 4 machines

○ A-64: 64 cores, 4x AMD Opteron 6272 (2011), Bulldozer, 8 NUMA nodes (2-hops)
○ A-48: 48 cores, 4x AMD Opteron 6344 (2012), Piledriver, 6 NUMA nodes (2-hops)
○ I-48:  48 cores, 4x Intel Xeon E7-4830 v3 (2015), Haswell, 4 NUMA nodes (1-hop)
○ I-20:  20 cores, 2x Intel Xeon E5-2680 v2 (2013), Ivy Bridge, 2 NUMA nodes (1-hop)

● 28 locks
● 40 applications
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Methodology
● 4 machines
● 28 locks

○ Competitive succession: 
■ Backoff, Mutexee, Pthread, PthreadAdapt, Spinlock, Spinlock-ls, TTAS, TTAS-ls

○ Direct handoff: 
■ ALock-ls, CLH_Spin, CLH_STP, CLH-ls, MCS_Spin, MCS_STP, MCS-ls, Ticket, 

Ticket-ls, Partitioned
○ Hierarchical: 

■ C-BO-MCS_Spin, C-BO-MCS_STP, C-PTL-TKT, C-TKT-TKT, HTicket-ls, HMCS
○ Load-control:

■  AHMCS, Malth_Spin, Malth_STP, MCS-TimePub

● 40 applications
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Methodology
● 4 machines
● 28 locks
● 40 applications

○ Real-world applications (8 workloads)
■ Kyotocabinet, Memcached, MySQL, RocksDB, SQLite, SSL_Proxy, Upscaledb

○ PARSEC 3.0 (14 workloads)
■ Representative mix of emerging multithreaded applications

○ Phoenix 2 (7 workloads)
■ Multicore MapReduce benchmark

○ SPLASH2x (16 workloads)
■ Multithreaded applications
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Methodology
● Lock parameters: from original papers

○ Very few people carefully tune lock algorithm parameters, very specific to the workload

● Pinning: no pinning and thread-to-node pinning
○ Many applications do not pin threads by default

● Disk I:O: in memory (tmpfs) 
○ HDD disks, and many applications load inputs from disk to memory

● Memory: interleaving
○ Avoid memory contention, often a problem on the A-64/A-48 machines

● BIOS: no hyperthreading, performance and energy-saving modes
○ Hyperthreading disabled for reproducibility

● Average of 5 runs + ramp-up period
○ More runs for configurations with high variability
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Lock-sensitive applications
60% of the studied applications are lock-sensitive
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Impact of the number of cores
● The performance of a lock depends on the number of cores

○ At one node (lower contention)
○ At maximum number of nodes (8 on A-64 and A-48, 4 on I-48, 2 on I-20)
○ At optimized number of nodes (take the best for each lock)

A-64 A-48 I-48 I-20

1 Node 19% 16% 1 Node 37% 1 Node 39%

2 Nodes 23% 21% 2 Nodes 17% 2 Nodes 61%

4 Nodes 26% 23% 3 Nodes 17%

6 Nodes 11% 16% 4 Nodes 29%

8 Nodes 21% 24%

Breakdown of the (lock-sensitive application, lock) pairs according to their optimized number of nodes
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How much do locks impact applications?

Impact [Min; Max] Average Median R.Dev

1 Node Reduced [1%; 819%] 73% 15% 9%

Max Nodes Huge [42%; 2382%] 768% 479% 41%

Opt Nodes Significant [5%; 819%] 132% 87% 18%

For lock-sensitive applications, statistics about the throughput of the best vs. worst lock at different numbers of nodes
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Are some locks always among the best?
● At max or opt nodes, no lock is the best in more than 50% of the cases

Fraction of lock-sensitive applications where a lock is optimal (the best or within 5% of the best)

Opt Max
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Additional observations
● All locks are potentially harmful

○ Any lock will exhibit poor performance

● There is no clear hierarchy between lock algorithms
○ It significantly changes with the application, the machine and the number of nodes

● Impact of thread pinning and BIOS configuration
○ Same observations and conclusions with thread-to-node pinning / with BIOS configured in 

energy-efficiency mode

● Pthread locks
○ Pthread locks perform reasonably well (i.e., are among the best locks) for many applications
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Implications of the study of lock throughput
● Do not hardwire the choice of a lock algorithm into an application

○ There is no single best lock

● The Pthread library should provide multiple lock implementations
○ Pthread is not the best for all applications

● Further research on optimized locks is needed, especially on
○ Dynamic approaches
○ Fully supporting the complete locking API
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Study of lock energy efficiency
● Energy efficiency = throughput per power (TPP)

○ Amount of work produced for a fixed amount of energy

● Similar conclusions for energy efficiency and throughput
○ No single best lock, all locks are harmful, etc.

● Other observations
○ Almost the same set of lock-sensitive applications for throughput and energy efficiency
○ Under (very) high contention, the energy efficiency gap is higher than the throughput gap
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The POLY conjecture
● “Energy efficiency and throughput go hand in hand in the context of locks 

algorithms” [UNLOCKING]

● Verified that POLY holds
for a large number of locks and 
applications
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Implications of the study of lock energy efficiency
● Insights from previous throughput-oriented research can be applied almost 

as-is in the design of energy-efficient locks
○ Lowering the energy consumption at the expense of latency (spin-then-park, DVFS)

● Improving throughput improves energy efficiency and vice-versa
○ The quest for scalable lock algorithms not only benefits throughput but also energy efficiency
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Study of lock tail latency
● Tail latency = 99th percentile of the client response time

○ Seven lock-sensitive server applications

● Do fair lock algorithms improve the application tail latency?
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Study of lock tail latency
● If an operation is mostly implemented as a single critical section

○ Lock properties affecting lock acquisition tail latency and throughput affect application tail 
latency and throughput

■ Low tail latency can be achieved with FIFO locks
■ One can trade fairness for throughput by using hierarchical locks for example

● For applications with many critical sections and/or critical sections protected 
by different lock instances and accessed by different threads

○ The tail latency of the lock does not necessarily affect the application tail latency
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Study of lock tail latency
● How does tail latency behave when locks suffer from high levels of 

contention?

○ Tail latency skyrockets: from one node to max node, average latency increases by 3.3x while 
tail latency increases by 22.9x (3.4x / 21x from opt to max)

○ In other words, the fairness among threads degrades 
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Analysis: lock-related bottlenecks
● Lock contention: multiple threads want to acquire the same lock

○ High levels of contention: 8 applications
■ 10-40/64 threads waiting for the same lock

○ Extreme levels of contention: 7 applications
■ 40+/64 threads waiting for the same lock

○ Trylock contention: 2 applications
■ Trylock used to implement busy-waiting

○ Many uncontended lock acquisitions: 1 application
■ Importance of the uncontended acquisition code path
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Analysis: lock-related bottlenecks
● Scheduling issues: the scheduler choices trigger pathological behaviors

○ Lock holder preemption: 2 applications
■ Preemption of the lock holder, delays the end of the critical section
■ Can lead to lock convoy: all threads eventually try to acquire the lock and delay the lock 

holder rescheduling
■ Often observed when there are more threads than cores (highly-threaded)

○ Lock handover: 6 applications
■ Happens with locks with a direct-handoff succession policy
■ Descheduling of the next-in-line thread for lock acquisition
■ Also happens when the application is not highly-threaded, as the scheduler migrates 

threads for other background tasks and/or saving energy
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Analysis: lock-related bottlenecks
● Memory footprint: the size of a lock instance affects performance

○ Erasing new memory pages inside the page fault handler: 4 applications
■ Allocation of 10k-100k lock instances, the kernel needs to zero memory pages, which 

takes time (seen at initialization time)

○ Kernel lock contention inside the page fault handler: 1 application
■ Contention inside the kernel with many concurrent memory allocation for lock instances

● Memory contention: saturation of the memory controller
○ Locks that are “too” fast increase memory controller saturation: 2 applications
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Choice guidelines
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Lessons Learned
&

Future Research
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Lessons learned
● Locking is not only about lock/unlock, but also trylock and condition variables

● Importance of the OS scheduler decisions
○ Many lock algorithms expect to be alone on the machine and always have 100% of the CPU 

available for them

● Effect of the memory footprint
○ Complex lock algorithms require more memory (e.g., to store statistics, thread-specific data), 

which is not cost-free
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Future research
● Automatic and dynamic solutions

○ Changing lock algorithms to account for runtime conditions (scheduling, memory, ...)

● Delegation algorithms
○ Better integration with the Pthread locking API

● Lock profiling tools should give a full profile of a lock and how it behaves
○ Interactions with scheduling and memory, other synchronization primitives, access patterns

● Multicore performance
○ Study other performance factors such as the OS scheduler, memory allocation, ...
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Publications
● Multicore Locks: The Case Is Not Closed Yet. 

Hugo Guiroux, Renaud Lachaize, and Vivien Quéma. 
In Proceedings of the USENIX Annual Technical Conference (USENIX ATC), 
June 2016.

● Lock - Unlock: Is That All? 
Rachid Guerraoui, Hugo Guiroux, Renaud Lachaize, Vivien Quéma, and 
Vasileios Trigonakis. 
To appear in ACM Transactions on Computer Systems (ACM TOCS), 2019.
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Thank you
https://github.com/multicore-locks/litl
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Modern multicore machines
● More and more cores per machine
● A modern multicore machine is a “distributed computer”
● NUMA factor: Local Access
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Modern multicore machines
● More and more cores per machine
● A modern multicore machine is a “distributed computer”
● NUMA factor: 1-hop request
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Modern multicore machines
● More and more cores per machine
● A modern multicore machine is a “distributed computer”
● NUMA factor: 2-hops request
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Parallel programming, mutual exclusion and locks
● Because accesses to data can be concurrent, execution contexts need to 

synchronize

bool try_enter_parking():
    if (num_spots_available >= 1) {
        num_spots_available -= 1;
        return true;
    } else {
        return false;
    }
}
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Parallel programming, mutual exclusion and locks
● Because accesses to data can be concurrent, execution contexts need to 

synchronize

bool try_enter_parking():
    bool can_enter = false;
    lock();
    if (num_spots_available >= 1) {
        num_spots_available -= 1;
        can_enter = true;
    }
    unlock();
    return can_enter;
}
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Parallel programming, mutual exclusion and locks
● Because accesses to data can be concurrent, execution contexts need to 
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Parallel programming, mutual exclusion and locks
● Because accesses to data can be concurrent, execution contexts need to 
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Parallel programming, mutual exclusion and locks
● Because accesses to data can be concurrent, execution contexts need to 
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Parallel programming, mutual exclusion and locks
● Because accesses to data can be concurrent, execution contexts need to 
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Parallel programming, mutual exclusion and locks
● Because accesses to data can be concurrent, execution contexts need to 

synchronize
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}
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● Spinning 
○ Wait actively for the lock

■ on-cpu: using atomic instructions, memory loads (ttas, backoff)
■ descheduled for a limited amount of time: sched_yield / sleep
■ HW support: lower CPU frequency (DVFS), MONITOR/MWAIT

● Immediate parking
○ Thread is descheduled until the lock is available:

■ Scheduler (OS or runtime) support (futex on Linux for kernel threads)

● Hybrid approaches 
○ Spin-then-park (mitigate the cost of parking)
○ Mix of policy (sched_yield and backoff)

Waiting policy
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Competitive succession
● The lock holder releases the lock, all competing threads tries to acquire it 

concurrently

● All threads tries to acquire the lock with an atomic instruction, which stress the 
cache-coherence protocol. But only one succeeds

● Allow barging, which might lead to unfairness and starvation between threads 
(bad when latency is important)
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Direct handoff succession
● The unlock operation identifies a waiting successor and passes the ownership 

to that thread
○ E.g., MCS construct a linked-list of waiting threads

● Allow each thread to wait on a non-globally shared memory address, avoiding 
unnecessary cache line invalidations

○ E.g., with MCS, each thread waits on a private variable until it is woken by its predecessor

● Better fairness, and generally better throughput than competitive succession 
under contention

○ The order of arrival is similar to the order of acquisition, less atomic instructions and cache line 
transfers
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Direct handoff succession
● Example of the MCS lock algorithm
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Direct handoff succession
● Example of the MCS lock algorithm
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Direct handoff succession
● Example of the MCS lock algorithm

76



Direct handoff succession
● Example of the MCS lock algorithm
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Direct handoff succession
● Example of the MCS lock algorithm
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Direct handoff succession
● Example of the MCS lock algorithm
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Direct handoff succession
● Example of the MCS lock algorithm
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Direct handoff succession
● Example of the MCS lock algorithm
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Hierarchical approaches
● Provide scalable performance on NUMA machines, by attempting to reduce 

lock migrations

● Favor threads running on the same NUMA node as the lock holder
○ Exchanging a cache line between cores of the same socket is less expensive than crossing 

the interconnect

● One lock algorithm for threads on the same NUMA socket, one algorithm for 
the global lock (can be the same)

○ E.g., Cohort locks
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Hierarchical approaches
● Example of a cohort lock algorithm
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Hierarchical approaches
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Hierarchical approaches
● Example of a cohort lock algorithm
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Hierarchical approaches
● Example of a cohort lock algorithm
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Hierarchical approaches
● Example of a cohort lock algorithm
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Delegation-based approaches
● A thread delegates the execution of a critical section to another thread

○ E.g., RCL dedicates one core to a server threads receiving CS execution requests from the 
client threads

● Improves cache locality within the critical section and better throughput under 
very high lock contention

○ Data is most likely to be already inside the caches

● Require the critical section to be expressed as a closure (e.g., a function), 
which is not compatible with the lock()/unlock() API

○ Need to modify the application source code
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Load-control mechanisms
● Detect situations when a lock needs to adapt itself

● Varying levels of contention
○ Change locking scheme: AHMCS / Malthusian algorithms
○ Dynamically switch between lock algorithms: GLS / SANL

● Pathological lock-related behaviors (e.g., scheduler related)
○ MCS-TimePub / LC
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Statistical test
● Test if we can make meaningful comparison between locks with LiTL

○ Order and distance between lock algorithms performance is the same with and without 
interposition (relative comparisons)

○ Use a Student paired t-test (accept if p-value > 0.05 in general)

Application C p-value

linear_regression -1.8% 0.84

matrix_multiply -0.2% 0.60

radiosity_ll -3.1% 0.72

s_raytrace_ll -0.2% 0.85
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Are some locks always among the best?
● At one node, no always-winning lock (max 73%)

Fraction of lock-sensitive application where a lock is optimal (the best at 5% of the best) 96



Are all locks potentially harmful?
● Best case 17%, worst case 96%

Fraction of lock-sensitive application where a lock is harmful (at least 15% worse than the best lock)

Opt Max
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Is there a clear hierarchy among locks?
● No clear hierarchy
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Analysis: lock-related bottlenecks
● Lock contention: multiple threads want to acquire the same lock

○ High/extreme levels of contention, uncontended acquisitions, trylock contention

● Scheduling issues: the scheduler choices trigger pathological behaviors
○ Lock holder preemption, lock handover

● Memory:
○ Footprint: kernel taking time to zero memory pages for lock instances (at initialization time)
○ Concurrent allocations: induce lock contention inside the kernel
○ Controller saturation: “too performant” locks might exacerbate an application bottleneck
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Lock properties
● Light: 

○ Short code path to acquire the lock when the lock is uncontented
■ Backoff, Mutexee, Pthread, Spinlock, TTAS

● Hierarchical lock: 
○ NUMA-aware locks

■ Cohort locks, HMCS, HTicket, AHMCS

● Contention-hardened trylock
○ Trylock operation that tolerates moderate to high levels of contention

■ Partitioned, Cohort locks, HMCS, MCS-TimePub
■ Not all locks can have trylocks (CLH, HTicket)
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Lock properties
● Parking

○ Spin-then-park/park waiting policy
■ Mutexee, Pthread, STP versions of locks, MCS-TimePub

● FIFO
○ Impose an order on the acquisitions of a lock instance according to thread arrival times

■ Direct-handoff succession locks, hierarchical locks, AHMCS, Malthusian

● Low memory footprint
■ Backoff, Pthread, Spinlock, Ticket, TTAS

● Low memory traffic
○ Induce a moderate traffic on the memory interconnect/memory controllers of the machine
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Lessons learned
● Lock profiling tools should give a full profile of a lock

○ Interactions with scheduling and memory, other synchronization primitives, lock access 
patterns

● Need for dynamic and more complete approaches
○ The choice of the lock algorithm should not be hardwired into the application
○ Existing adaptive lock algorithms (e.g., AHMCS) are a step in the right direction, but they do 

not consider the full spectrum of lock-related performance bottlenecks
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Future research
● Multicore performance

○ Study other performance factors such as the OS scheduler, memory allocation, compiler
○ Revisit scheduler and memory allocation for the micro/nano scale era

● Delegation algorithms
○ Better integration with the Pthread locking API
○ Interaction with the scheduler

● Automatic and dynamic solutions
○ Changing lock at run time to account for runtime conditions (scheduling, memory, ...)

● Leveraging transactional memory
○ Mixing transactional memory and locking should allow to deal with varying levels of contention

103


