Understanding the performance of

O
Ph.

mutual exclusion algorithms
N Modern multicore machines

D. thesis defense, Universite Grenoble Alpes

Hugo Guiroux

Supervised by:
Prof. Vivien Quéma
Dr. Renaud Lachaize

Outline

1.

Context

Background and Related Work
LiTL

Study

Lessons Learned and Future Research

Context

Modern multicore machines

e More and more cores per machine
e A modern multicore machine is a “distributed computer” with a single coherent
shared memory (with NUMA: Non Uniform Memory Accesses)

Parallel programming, mutual exclusion and locks

Because accesses to data can be concurrent, execution contexts need to
synchronize

Using mutual exclusion locks is the most popular synchronization technique
Locks introduce sequential parts

The scalability of an application is always constrained by its sequential parts
(Amdahl’s law)

Thesis statement

e Many lock algorithms, still an active field of research

1979 19950 1991 1994 2004 2011 2015 2016 2017
Ticket TTAS Backoff CLH Pthread Partitioned Cohort Mutexee Malthusian
1990 1990 1991 2004 2005 2013 2015 2016
Spinlock ALock MCS PthreadAdapt MCS-Timepub HTicket HMCS AHMCS

e Limitations of existing studies:
o Microbenchmarks, limited number of algorithms/applications/workloads, focus only on
throughput...

Thesis contribution

Thorough and practical analysis of mutual exclusion lock algorithms,
with the goal of
providing software developers with enough information
to choose and design
fast, scalable and energy-efficient synchronization in their systems

Background

&
Related Work

Locking 101

e Lock/unlock
o Protect a critical section (CS), only one thread can hold the lock, others block waiting for it

e Trylock

o Try to acquire the lock and if not available, execute other work instead of blocking

e Condition variables
o Allow a thread to wait for a software-level condition while inside the critical section, by
temporarily releasing the lock and acquiring it again when the thread has been notified that the
condition is met

Deconstructing a lock: three main design questions

e How to acquire the lock?
o (Almost) always use atomic processor instructions to ensure the atomicity of the CS

e How to release the lock?

o When there are other threads waiting for it (which successor)?
o Where there is no thread waiting for it

e \What to do while waiting for a lock already held?
o Often orthogonal to the choice with respect to lock acquisition

10

Waiting policy

e Spinning

o Wait actively for the lock

e |Immediate parking
o Thread is descheduled until the lock is available

e Hybrid approaches
o Spin-then-park (mitigate the cost of parking)

11

TTAS lock algorithm (Test-and-Test-And-Set)

CAS

12

TTAS lock algorithm

ANNT

13

TTAS lock algorithm

14

TTAS lock algorithm

T2

e
>

TTAS lock algorithm

v

T2

T4 ; N
Categorizing lock algorithms X o U

>

e Competitive succession

o Atunlock time, all waiting threads try to acquire the lock concurrently, with atomic instructions

17

[
Categorizing lock algorithms G-

T1 node T2 node T8 node

(@)

e Direct handoff succession
o Waiting threads are ordered, give the lock to a specific successor

18

T3

Lock
\

; Lock Lock

Categorizing lock algorithms

e Hierarchical approaches
o Hierarchical scheme of lock acquisition, minimize lock migrations between NUMA nodes

T1

19

gl 3 =)
DU R
\ I ,| code |
\ ! N code
\ ! ’

Lock T1 context CS function
code

Categorizing lock algorithms

\ ! /
A} v T
\ 1 ’
Req 1 \ ! /

Rq2| J | & | I

(@)

e Delegation-based
o Delegate the execution of the CS to another thread

20

Categorizing lock algorithms

Tail

V/”// T1 T3
Ul ¢
T3 node
PS Head T4 T2
S
L L
T4 node T2 node

Load-control

@)

Adapt the lock algorithm to runtime conditions (level of contention, scheduler inefficiencies)

21

Related work: other studies

e Limited number of lock algorithms
o Approximately 10 algorithms: [EVERYTHING], [MALTHUSIAN], [RCL]

e Mainly microbenchmarks
o Test a property of a lock (scalability), but do not capture how the locks behave inside the
application
o Often ignore the interactions of locks with scheduling and memory management

e Limited number of applications and metrics
o Approximately 10 applications, mostly focus on throughput

22

Obijective
e \We want to compare many locks on many applications

e Tedious because it requires changing the source code of each application

How to do this practically?

23

LITL

Library for Transparent Lock interposition

General principles

e Almost all the application use the pthread _mutex_(un)lock functions

(@)

Use a dynamic library to provide different implementations of the locking-related functions

e Advantages:

(@)

Testing a new lock is very easy: switching between lock algorithms by loading a specific dynamic
library (e.g., via LD_PRELOAD)

Stacking libraries is possible: e.g., for collecting lock statistics of any lock implementation (hold
time, acquisition throughput, etc.)

Providing condition variables to workload-specific locks

25

Challenges

e Different lock semantics
o Supporting per-thread contexts
m Lock algorithms like MCS require a per-thread context
m The Pthread locking API does not support this
m Use an array of per-thread contexts
o Linking the original lock instance with the optimized lock instance
m Hashmap between pthread mutex pointer and lock implementation

e Condition variables
o Used by many applications, ignored by lock designers
o Reuse the Pthread condition variables implementation by acquiring an (almost always)
uncontended Pthread lock

26

Validation

linear_regression matrix_multiply radiosity_lI s_raytrace_ll

27

Eq

I]I].,M]Hnn

—

-

C—
-

-

-
C—
—
—

&\

¢
\
s

Sp. %, %, & &
0, Bz 0
//)/o //)/o ,,/.@/ 4@/@ £
% % %
%, 6

3

Y
%

(1am8q st Jaybiy)
indybnouiy} uoneoldde paziewioN

Modify the source code of 4 applications, compare manual vs LiTL

1.00
0.75
0.50
0.25
0.00
1.00
0.75
0.50
0.25
0.00
1.004
0.75
0.50
0.25
0.00
1.00
0.75
0.50
0.25
0.00

Study

Methodology

4 machines

A-64: 64 cores, 4x AMD Opteron 6272 (2011), Bulldozer, 8 NUMA nodes (2-hops)
A-48: 48 cores, 4x AMD Opteron 6344 (2012), Piledriver, 6 NUMA nodes (2-hops)
1-48: 48 cores, 4x Intel Xeon E7-4830 v3 (2015), Haswell, 4 NUMA nodes (1-hop)

o 1-20: 20 cores, 2x Intel Xeon E5-2680 v2 (2013), vy Bridge, 2 NUMA nodes (1-hop)

28 locks
40 applications

o O O

29

Methodology

e 4 machines
e 28 locks

o Competitive succession:

m Backoff, Mutexee, Pthread, PthreadAdapt, Spinlock, Spinlock-Is, TTAS, TTAS-Is
o Direct handoff:

m Alock-Is, CLH_Spin, CLH_STP, CLH-Is, MCS_Spin, MCS_STP, MCS-Is, Ticket,

Ticket-ls, Partitioned

o Hierarchical:

m C-BO-MCS_Spin, C-BO-MCS_STP, C-PTL-TKT, C-TKT-TKT, HTicket-Is, HMCS
o Load-control:

m AHMCS, Malth_Spin, Malth_STP, MCS-TimePub

e 40 applications

30

Methodology

e 4 machines
e 28 locks

e 40 applications
o Real-world applications (8 workloads)
m Kyotocabinet, Memcached, MySQL, RocksDB, SQLite, SSL_Proxy, Upscaledb
o PARSEC 3.0 (14 workloads)
m Representative mix of emerging multithreaded applications
o Phoenix 2 (7 workloads)
m Multicore MapReduce benchmark
o SPLASH2x (16 workloads)
m Multithreaded applications

31

Methodology

e Lock parameters: from original papers

o Very few people carefully tune lock algorithm parameters, very specific to the workload
e Pinning: no pinning and thread-to-node pinning

o Many applications do not pin threads by default
e Disk I:O: in memory (tmpfs)

o HDD disks, and many applications load inputs from disk to memory

e Memory: interleaving
o Avoid memory contention, often a problem on the A-64/A-48 machines

e BIOS: no hyperthreading, performance and energy-saving modes
o Hyperthreading disabled for reproducibility

e Average of 5 runs + ramp-up period
o More runs for configurations with high variability

32

lons

t

lica

-sensitive app

Lock

-Sensitive

100%
75%
50%
25%

SOPON XBIN 18 Ad(TY

60% of the studied applications are lock

33

Impact of the number of cores

e The performance of a lock depends on the number of cores

O At one node (lower contention)
o At maximum number of nodes (8 on A-64 and A-48, 4 on 1-48, 2 on 1-20)
o At optimized number of nodes (take the best for each lock)

A-64 A-48 1-48 1-20
1 Node 19% 16% 1 Node 37% 1 Node 39%
2 Nodes 23% 21% 2 Nodes 17% 2 Nodes 61%
4 Nodes 26% 23% 3 Nodes 17%
6 Nodes 1% 16% 4 Nodes 29%
8 Nodes 2% 24%

Breakdown of the (lock-sensitive application, lock) pairs according to their optimized number of nodes

34

How much do locks impact applications?

Impact [Min; Max] Average Median R.Dev
1 Node Reduced [1%; 819%] 73% 15% 9%
Max Nodes Huge [42%; 2382%)] 768% 479% 41%
Opt Nodes Significant [5%; 819%] 132% 87% 18%

For lock-sensitive applications, statistics about the throughput of the best vs. worst lock at different numbers of nodes

35

Are some locks always among the best?

e At max or opt nodes, no lock is the best in more than 50% of the cases

509 -
AL |
@&o@?y“/x%\ S aw%?o%qQ%’efw@‘vQ\O**é’%
NS S X O S R SN . P X5 O\Q&’ > ‘\,.\e X
DAY \0@;0 C)@/ OC)'Q Uygz;v » > ~6‘§) ‘b’\&io X é?s @/&0@ 9 &\»&QQ\})@ o§2\ @o \>\}c, xS
SN & F NN &
X N Q°

Fraction of lock-sensitive applications where a lock is optimal (the best or within 5% of the best) 36

Additional observations

e All locks are potentially harmful
o Any lock will exhibit poor performance

e There is no clear hierarchy between lock algorithms
o It significantly changes with the application, the machine and the number of nodes

e Impact of thread pinning and BIOS configuration
o Same observations and conclusions with thread-to-node pinning / with BIOS configured in

energy-efficiency mode

e Pthread locks

o Pthread locks perform reasonably well (i.e., are among the best locks) for many applications

37

Implications of the study of lock throughput

e Do not hardwire the choice of a lock algorithm into an application
o There is no single best lock

e The Pthread library should provide multiple lock implementations
o Pthread is not the best for all applications

e Further research on optimized locks is needed, especially on

o Dynamic approaches
o Fully supporting the complete locking API

38

Study of lock energy efficiency

e Energy efficiency = throughput per power (TPP)

o Amount of work produced for a fixed amount of energy

e Similar conclusions for energy efficiency and throughput
o No single best lock, all locks are harmful, etc.

e Other observations

o Almost the same set of lock-sensitive applications for throughput and energy efficiency
o Under (very) high contention, the energy efficiency gap is higher than the throughput gap

39

The POLY conjecture

e “Energy efficiency and throughput go hand in hand in the context of locks

algorithms” [UNLOCKING]

e Verified that POLY holds
for a large number of locks and
applications

0.75-

0.50-

Normalized TPP

0.25-

0.00 0.25 0.50 0.75 1.00
Normalized Throughput

Lock algorithm

= ahmcs

= alock-Is

< backoff

© c-bo-mcs_spin

~ c-bo-mcs_stp

1 c-ptl-tkt
c-tkt-tkt

= clh_spin

<l clh_stp

O clh-Is

~ hmes

&1 hticket-Is

O malth_spin

A malth_stp

< mcs_spin

© mcs_stp

4 mcs-Is

2 mcs-timepub

= mutexee

4 partitioned

< pthread

© pthreadadapt

. spinlock

I spinlock-Is

= ticket

+ ticket-Is

< ttas

® ttas-Is

40

Implications of the study of lock energy efficiency

e Insights from previous throughput-oriented research can be applied almost
as-is in the design of energy-efficient locks

O Lowering the energy consumption at the expense of latency (spin-then-park, DVFS)

e Improving throughput improves energy efficiency and vice-versa
o The quest for scalable lock algorithms not only benefits throughput but also energy efficiency

41

Study of lock tail latency

e Tail latency = 99th percentile of the client response time
o Seven lock-sensitive server applications

e Do fair lock algorithms improve the application tail latency?

kyotocabinet memcached-new
S 200% 200% -
(&)
c
2
E g 150% - 150% -
£9
S £
® Q 100% 100%
O =
Q=
T3 50%- 50% -
5 e
2 .=l

Q %@b OO0 00 R AR P20 Qo w\c;,b@) /\ P e /\c: /\’o B c? Q Oe Q\.Q P ,p & &
SUREROERY SRR G ¢ LIS
/@,éogé@& 0{?\ vl 'b\ Q \0 Iy A &Cf’ & s RS %@\\/& %
< & “ & & ek

Study of lock tail latency

e If an operation is mostly implemented as a single critical section

O Lock properties affecting lock acquisition tail latency and throughput affect application tail

latency and throughput
m Low tail latency can be achieved with FIFO locks
m One can trade fairness for throughput by using hierarchical locks for example

e For applications with many critical sections and/or critical sections protected

by different lock instances and accessed by different threads
o The tail latency of the lock does not necessarily affect the application tail latency

43

Study of lock tail latency

e How does tail latency behave when locks suffer from high levels of
contention?

o Tail latency skyrockets: from one node to max node, average latency increases by 3.3x while
tail latency increases by 22.9x (3.4x / 21x from opt to max)

o In other words, the fairness among threads degrades

44

Analysis: lock-related bottlenecks
e Lock contention: multiple threads want to acquire the same lock

o High levels of contention: 8 applications
m 10-40/64 threads waiting for the same lock

o Extreme levels of contention: 7 applications
m 40+/64 threads waiting for the same lock

o Trylock contention: 2 applications
m Trylock used to implement busy-waiting

o Many uncontended lock acquisitions: 1 application
m Importance of the uncontended acquisition code path

45

Analysis: lock-related bottlenecks

e Scheduling issues: the scheduler choices trigger pathological behaviors

o Lock holder preemption: 2 applications
m Preemption of the lock holder, delays the end of the critical section
m Can lead to lock convoy: all threads eventually try to acquire the lock and delay the lock
holder rescheduling
m Often observed when there are more threads than cores (highly-threaded)

o Lock handover: 6 applications
m Happens with locks with a direct-handoff succession policy
m Descheduling of the next-in-line thread for lock acquisition
m Also happens when the application is not highly-threaded, as the scheduler migrates

threads for other background tasks and/or saving energy

46

Analysis: lock-related bottlenecks
e Memory footprint: the size of a lock instance affects performance

o Erasing new memory pages inside the page fault handler: 4 applications
m Allocation of 10k-100k lock instances, the kernel needs to zero memory pages, which
takes time (seen at initialization time)

o Kernel lock contention inside the page fault handler: 1 application
m Contention inside the kernel with many concurrent memory allocation for lock instances

e Memory contention: saturation of the memory controller
o Locks that are “too” fast increase memory controller saturation: 2 applications

47

Choice guidelines

start

More threads

no

than cores?

yes

Y

Stress the scheduler

”| (e.g., 10, condition variables?)

/g

Avoid spinning
algorithms

Prefer spinning
algorithms

Avoid FIFO
algorithms

|

Y

Many lock instances? (>1k)

no

yes

Y

yes
\ 2

Prefer low memory
footprint algorithms

Lock operation? |

Application suffers

> - o
from memory contention?

Prefer algorithms

that induce a moderate usage no
of the memory interconnect

high

Y

log trylock
A4
Hierarchical lock Hierarchical trylock
algorithms algorithms

Levels of contention?

A

low \U{ierate
v

Light
lock algorithms

Local spinning
lock algorithms

48

Lessons Learned
&
Future Research

Lessons learned

e Locking is not only about lock/unlock, but also trylock and condition variables

e Importance of the OS scheduler decisions

o Many lock algorithms expect to be alone on the machine and always have 100% of the CPU
available for them

e Effect of the memory footprint

o Complex lock algorithms require more memory (e.g., to store statistics, thread-specific data),
which is not cost-free

50

Future research

e Automatic and dynamic solutions
o Changing lock algorithms to account for runtime conditions (scheduling, memory, ...)

e Delegation algorithms
o Better integration with the Pthread locking API

e Lock profiling tools should give a full profile of a lock and how it behaves
o Interactions with scheduling and memory, other synchronization primitives, access patterns

e Multicore performance
o Study other performance factors such as the OS scheduler, memory allocation, ...

51

Publications

e Multicore Locks: The Case Is Not Closed Yet.
Hugo Guiroux, Renaud Lachaize, and Vivien Quéma.
In Proceedings of the USENIX Annual Technical Conference (USENIX ATC),

June 2016.

e Lock - Unlock: Is That All?
Rachid Guerraoui, Hugo Guiroux, Renaud Lachaize, Vivien Quéma, and

Vasileios Trigonakis.
To appear in ACM Transactions on Computer Systems (ACM TOCS), 2019.

52

Bibliography

e [EVERYTHING] David, Tudor, Rachid Guerraoui, and Vasileios Trigonakis. "Everything you always wanted to know
about synchronization but were afraid to ask." In Proceedings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles, pp. 33-48. ACM, 2013.

e [MALTHUSIAN] Dice, Dave. "Malthusian locks." In Proceedings of the Twelfth European Conference on Computer
Systems, pp. 314-327. ACM, 2017.

e [RCL] Lozi, Jean-Pierre, Florian David, Gaél Thomas, Julia Lawall, and Gilles Muller. "Fast and portable locking for
multicore architectures." ACM Transactions on Computer Systems (TOCS) 33, no. 4 (2016): 13.

e [UNLOCKING] Falsafi, Babak, Rachid Guerraoui, Javier Picorel, and Vasileios Trigonakis. "Unlocking Energy." In
USENIX Annual Technical Conference, pp. 393-406. 2016.

53

Thank you

https.//github.com/multicore-locks/litl

54

Modern multicore machines

e More and more cores per machine
e A modern multicore machine is a “distributed computer”
e NUMA factor: Local Access

55

Modern multicore machines

More and more cores per machine
A modern multicore machine is a “distributed computer”
NUMA factor: 1-hop request

56

Modern multicore machines

More and more cores per machine
A modern multicore machine is a “distributed computer”
NUMA factor: 2-hops request

57

Parallel programming, mutual exclusion and locks

e Because accesses to data can be concurrent, execution contexts need to
synchronize

\ bool try_enter_parking():
if (num_spots_available >= 1) {
num_spots_available -= 1;
return true;
}else {
return false;
}
}

p'

DDDDD
D

DD D|DD|D
DIDDD D)

D)
"

DDH+DD D

58

Parallel programming, mutual exclusion and locks

e Because accesses to data can be concurrent, execution contexts need to
synchronize

= =
/ \ bool try_enter_parking(): bool try_enter_parking():
if (num_spots_available >= 1) { if (num_spots_available >= 1) {

g % g % g num_spots_available -= 1; num_spots_available -= 1;
be=r I g g g g return true; return true;

=== — | }else { }else {

§ g_ é g return false; return false;

o= | &= =t 1 }

—~ | 1 | } }

H+ =28
o) Ble a8
' KQ B &8 Q/

59

Parallel programming, mutual exclusion and locks

e Because accesses to data can be concurrent, execution contexts need to
synchronize

= =
/ == - g\ boﬁl(trlrﬁﬁqe_nstzg_tgf:\(;;?e%le >=1){ boﬁl(tnrﬁ_nstre:&gf:\(flgl?ééle >=1{
g I §§ §§ ?el:mﬁisjoet;s_ava"able =1; lrﬂ:;:lrjlr:;s:||'cLoet;S_avaiIable =1
=== e e
2+ =8 | |
2 ==
=I==1I=]

D)
"

60

Parallel programming, mutual exclusion and locks

e Because accesses to data can be concurrent, execution contexts need to
synchronize

= =
/ \ bool try_enter_parking(): bool try_enter_parking():
if (num_spots_available >= 1) { if (num_spots_available >= 1) {
% g % g num_spots_available -= 1; num_spots_available -= 1;
return true; return true;
l Rl 2= Yooy o
turn false; turn false;
Q QQQ Q } return ralse } return ralse
a+ 2 } }
HE &=
HE &=

D
\

Parallel programming, mutual exclusion and locks

e Because accesses to data can be concurrent, execution contexts need to
synchronize

/ \ bool try_enter_parking():
g g g g bool can_enter = false;
A I A I lock();
if (num_spots_available >= 1) {
Q I Q g g Q num_spots_available -= 1;
— | — can_enter = true;
HE =&)
= — T unlock();
return can_enter;
= ==
P pp— P pp— }
a2 a8
HE &8 Q/

62

Parallel programming, mutual exclusion and locks

e Because accesses to data can be concurrent, execution contexts need to

synchronize

~

p'

D

DD D|DD|D
DIDDD D)

D)
"

DDDDD
DDH+DD D

=

bool try_enter_parking():
bool can_enter = false;
lock();
if (num_spots_available >= 1) {
num_spots_available -= 1;
can_enter = true;

}
unlock();
return can_enter;

=

bool try_enter_parking():
bool can_enter = false;
lock();
if (num_spots_available >= 1) {
num_spots_available -= 1;
can_enter = true;

}
unlock();
return can_enter;

63

Parallel programming, mutual exclusion and locks

e Because accesses to data can be concurrent, execution contexts need to

synchronize

~

p'

D

DD D|DD|D
DIDDD D)

D)
"

DDDDD
DDH+DD D

=

bool try_enter_parking():
bool can_enter = false;
lock();
if (num_spots_available >= 1) {
num_spots_available -= 1;
can_enter = true;

}
unlock();
return can_enter;

=

bool try_enter_parking():
bool can_enter = false;
lock();
if (num_spots_available >= 1) {
num_spots_available -= 1;
can_enter = true;

}
unlock();
return can_enter;

64

Parallel programming, mutual exclusion and locks

e Because accesses to data can be concurrent, execution contexts need to

synchronize

~

p'

D

DD D|DD|D
DIDDD D)

D)
"

DDDDD
DDH+DD D

=

bool try_enter_parking():
bool can_enter = false;
lock();
if (num_spots_available >= 1) {
num_spots_available -= 1;
can_enter = true;

}
unlock();
return can_enter;

=

bool try_enter_parking():
bool can_enter = false;
lock();
if (num_spots_available >= 1) {
num_spots_available -= 1;
can_enter = true;

}
unlock();
return can_enter;

65

Parallel programming, mutual exclusion and locks

e Because accesses to data can be concurrent, execution contexts need to

synchronize

~

p'

D

DD D|DD|D
DIDDD D)

D)
"

DDDDD
DDH+DD D

=

bool try_enter_parking():
bool can_enter = false;
lock();
if (num_spots_available >= 1) {
num_spots_available -= 1;
can_enter = true;

}
unlock();
return can_enter;

=

bool try_enter_parking():
bool can_enter = false;
lock();
if (num_spots_available >= 1) {
num_spots_available -= 1;
can_enter = true;

}
unlock();
return can_enter;

66

Parallel programming, mutual exclusion and locks

e Because accesses to data can be concurrent, execution contexts need to

synchronize

~

p'

D

DD D|DD|D
DIDDD D)

D)
"

DDDDD
DDH+DD D

=

bool try_enter_parking():
bool can_enter = false;
lock();
if (num_spots_available >= 1) {
num_spots_available -= 1;
can_enter = true;

}
unlock();
return can_enter;

=

bool try_enter_parking():
bool can_enter = false;
lock();
if (num_spots_available >= 1) {
num_spots_available -= 1;
can_enter = true;

}
unlock();
return can_enter;

67

Parallel programming, mutual exclusion and locks

e Because accesses to data can be concurrent, execution contexts need to

synchronize

~

p'

D

DD D|DD|D
DIDDD D)

D)
"

DDDDD
DDH+DD D

=

bool try_enter_parking():
bool can_enter = false;
lock();
if (num_spots_available >= 1) {
num_spots_available -= 1;
can_enter = true;

}
unlock();
return can_enter;

=

bool try_enter_parking():
bool can_enter = false;
lock();
if (num_spots_available >= 1) {
num_spots_available -= 1;
can_enter = true;

}
unlock();
return can_enter;

68

Parallel programming, mutual exclusion and locks

e Because accesses to data can be concurrent, execution contexts need to

synchronize

~

p'

D

DDnD

D00 DD[D

DD DD|D)
Iﬂ)\lﬂ)\%\ﬁﬂ)\:ﬂ)\:ﬂ)

D
o

=

bool try_enter_parking():
bool can_enter = false;
lock();
if (num_spots_available >= 1) {
num_spots_available -= 1;
can_enter = true;

}
unlock();
return can_enter;

=

bool try_enter_parking():
bool can_enter = false;
lock();
if (num_spots_available >= 1) {
num_spots_available -= 1;
can_enter = true;

}
unlock();
return can_enter;

69

Parallel programming, mutual exclusion and locks

e Because accesses to data can be concurrent, execution contexts need to

synchronize

~

p'

D

DDnD

D00 DD[D

DD DD|D)
Iﬂ)\lﬂ)\%\ﬁﬂ)\:ﬂ)\:ﬂ)

D
o

=

bool try_enter_parking():
bool can_enter = false;
lock();
if (num_spots_available >= 1) {
num_spots_available -= 1;
can_enter = true;

}
unlock();
return can_enter;

=

bool try_enter_parking():
bool can_enter = false;
lock();
if (num_spots_available >= 1) {
num_spots_available -= 1;
can_enter = true;

}
unlock();
return can_enter;

70

Waiting policy

e Spinning
o Wait actively for the lock
m on-cpu: using atomic instructions, memory loads (ttas, backoff)

m descheduled for a limited amount of time: sched_yield / sleep
m HW support: lower CPU frequency (DVFS), MONITOR/MWAIT

e Immediate parking
o Thread is descheduled until the lock is available:
m Scheduler (OS or runtime) support (futex on Linux for kernel threads)

e Hybrid approaches
o Spin-then-park (mitigate the cost of parking)
o Mix of policy (sched_yield and backoff)

71

Competitive succession

e The lock holder releases the lock, all competing threads tries to acquire it
concurrently

e All threads tries to acquire the lock with an atomic instruction, which stress the
cache-coherence protocol. But only one succeeds

e Allow barging, which might lead to unfairness and starvation between threads
(bad when latency is important)

72

Direct handoff succession

e The unlock operation identifies a waiting successor and passes the ownership
to that thread

o E.g., MCS construct a linked-list of waiting threads

e Allow each thread to wait on a non-globally shared memory address, avoiding
unnecessary cache line invalidations
o E.g., with MCS, each thread waits on a private variable until it is woken by its predecessor

e Better fairness, and generally better throughput than competitive succession
under contention

o The order of arrival is similar to the order of acquisition, less atomic instructions and cache line
transfers

73

Direct handoff succession

e Example of the MCS lock algorithm

Tail

SWAP
T1

L

T1 node

Direct handoff succession

e Example of the MCS lock algorithm

Tail

|
|
[
!
0

T1

U

4

T1 node

75

Direct handoff succession

e Example of the MCS lock algorithm

SWAP
T2

Tail

g

T1 node

L

T2 node

~
=

ANN

76

Direct handoff succession

e Example of the MCS lock algorithm

Tail

77

Direct handoff succession

e Example of the MCS lock algorithm

Tazil T2

78

Direct handoff succession

e Example of the MCS lock algorithm

Tal T1

<_____
€

T2 node

79

Direct handoff succession

e Example of the MCS lock algorithm

Tail T1

|
[
[
[

N2

U

T2 node

Direct handoff succession

e Example of the MCS lock algorithm

Tazl

T T2

S ¢

81

Hierarchical approaches

e Provide scalable performance on NUMA machines, by attempting to reduce
lock migrations

e Favor threads running on the same NUMA node as the lock holder
o Exchanging a cache line between cores of the same socket is less expensive than crossing
the interconnect

e One lock algorithm for threads on the same NUMA socket, one algorithm for

the global lock (can be the same)
o E.g., Cohort locks

82

Hierarchical approaches

e Example of a cohort lock algorithm

; Lock

OO D

83

Hierarchical approaches

e Example of a cohort lock algorithm

0

OO

84

Hierarchical approaches

e Example of a cohort lock algorithm

OO

T1

?

85

Hierarchical approaches

e Example of a cohort lock algorithm

; Lock

AU

1%1

C

86

Hierarchical approaches

e Example of a cohort lock algorithm

T2

ROR

T1

:

C

87

Hierarchical approaches

e Example of a cohort lock algorithm

TS

S~
®

88

Hierarchical approaches

e Example of a cohort lock algorithm

@@@@

89

Hierarchical approaches

e Example of a cohort lock algorithm

m :

90

Hierarchical approaches

e Example of a cohort lock algorithm

15’/ @k? T1
SHHD ¢

91

Hierarchical approaches

e Example of a cohort lock algorithm

1;’
<

OOOD

:

T1

:

92

Delegation-based approaches

e A thread delegates the execution of a critical section to another thread
o E.g., RCL dedicates one core to a server threads receiving CS execution requests from the

client threads

e Improves cache locality within the critical section and better throughput under

very high lock contention
o Data is most likely to be already inside the caches

e Require the critical section to be expressed as a closure (e.g., a function),
which is not compatible with the lock()/unlock() API

o Need to modify the application source code

93

L oad-control mechanisms

e Detect situations when a lock needs to adapt itself

e Varying levels of contention

o Change locking scheme: AHMCS / Malthusian algorithms
o Dynamically switch between lock algorithms: GLS / SANL

e Pathological lock-related behaviors (e.g., scheduler related)
o MCS-TimePub/LC

94

Statistical test

e Test if we can make meaningful comparison between locks with LiTL
o Order and distance between lock algorithms performance is the same with and without
interposition (relative comparisons)
o Use a Student paired t-test (accept if p-value > 0.05 in general)

Application C p-value
linear_regression -1.8% 0.84
matrix_multiply -0.2% 0.60
radiosity_|I -3.1% 0.72

s_raytrace_ll -0.2% 0.85

Are some locks always among the best?

e At one node, no always-winning lock (max 73%)

75% 1

50% -

0% 13
Q‘Z’b
X0

% @ @
. xS S o RO A N
SR S /&w%&@q:w RN Q”%»e:% @gﬁ\o&-oe&@@%
NS SISV AN S I S SIS SO M I
TEFEFAL T IS ﬁi@&o&{@{&Q D
NN & & F &
et © & Q

Fraction of lock-sensitive application where a lock is optimal (the best at 5% of the best)

Are all locks potentially harmful?

e Best case 17%, worst case 96%

100% A

75%
50% -
1]

0%_ 1
@ﬁﬁ\@&$

7z OJ ‘Q’ QJ O \b' C_, @ \) qy
ALY Oxg? N > &7 X AR @ L8
“&Q@\ONQ@ 62){900&(5& C}\Q > ‘K}C)‘b,\%{}‘& '%&@J @@9{&,\ Q\:Z)@b %’Q S \,
O/&O/ \Q& < C)GJ/ ’Q‘b \& o)
O < Q

Fraction of lock-sensitive application where a lock is harmful (at least 15% worse than the best lock) 97

Is there a clear hierarchy among locks?

e No clear hierarchy

s_raytrace pca_ll radiosity

98

Analysis: lock-related bottlenecks

e Lock contention: multiple threads want to acquire the same lock

O High/extreme levels of contention, uncontended acquisitions, trylock contention

e Scheduling issues: the scheduler choices trigger pathological behaviors
o Lock holder preemption, lock handover

e Memory:
o Footprint: kernel taking time to zero memory pages for lock instances (at initialization time)
o Concurrent allocations: induce lock contention inside the kernel
o Controller saturation: “too performant” locks might exacerbate an application bottleneck

99

Lock properties

e Light:
o Short code path to acquire the lock when the lock is uncontented
m Backoff, Mutexee, Pthread, Spinlock, TTAS

e Hierarchical lock:
o NUMA-aware locks
m Cohort locks, HMCS, HTicket, AHMCS

e Contention-hardened trylock
o Trylock operation that tolerates moderate to high levels of contention
m Partitioned, Cohort locks, HMCS, MCS-TimePub
m Not all locks can have trylocks (CLH, HTicket)

100

Lock properties

e Parking
o Spin-then-park/park waiting policy
m Mutexee, Pthread, STP versions of locks, MCS-TimePub

e FIFO

o Impose an order on the acquisitions of a lock instance according to thread arrival times
m Direct-handoff succession locks, hierarchical locks, AHMCS, Malthusian

e Low memory footprint
m Backoff, Pthread, Spinlock, Ticket, TTAS

e Low memory traffic

o Induce a moderate traffic on the memory interconnect/memory controllers of the machine
m Backoff, TTAS-Is, Malthusian 101

Lessons learned

e Lock profiling tools should give a full profile of a lock
o Interactions with scheduling and memory, other synchronization primitives, lock access
patterns

e Need for dynamic and more complete approaches
o The choice of the lock algorithm should not be hardwired into the application
o Existing adaptive lock algorithms (e.g., AHMCS) are a step in the right direction, but they do
not consider the full spectrum of lock-related performance bottlenecks

102

Future research

e Multicore performance
o Study other performance factors such as the OS scheduler, memory allocation, compiler
o Revisit scheduler and memory allocation for the micro/nano scale era

e Delegation algorithms
o Better integration with the Pthread locking API
o Interaction with the scheduler

e Automatic and dynamic solutions
o Changing lock at run time to account for runtime conditions (scheduling, memory, ...)

e Leveraging transactional memory
o Mixing transactional memory and locking should allow to deal with varying levels of contention
103

